
Can you expand this code please: #(C)Tsubasa Kato - Inspire
Search Corporation - Updated on 9/6/2023 10:44AM
#This is a concept of a generator of seed URLs to be used
alongside a web crawler.
#This will output related seeds after asking LLM or a search API in
a text file called seeds.txt .
#Needs actual testing for the code to work. This is provided as a
concept to implement further.
#Created with the help of ChatGPT (GPT-4)
from flask import Flask, jsonify, request
#import requests
import subprocess
import re
import urllib.parse

app = Flask(__name__)

LLM_LOCAL_ENDPOINT = "http://localhost:5000/expand-query"
SEARCH_API_ENDPOINT = "https://localhost/search.php?query="
Replace with the actual search API endpoint

def call_script(script_path, *args):
 command = ['python', script_path] + list(args)
 result = subprocess.run(command, capture_output=True,
text=True)

 if result.returncode != 0:
 print(f"Error occurred: {result.stderr}")
 return None

 return result.stdout

def extract_sentences(text):
 return re.findall(r'.*?[?!.]', text)

@app.route('/expand-query', methods=['GET'])
def expand_query():

 query = request.args.get('query')

 try:
 output = call_script("test-llama-13b.py", query)
 output = str(output) + " " + "Yes, it's working"

 sentences = extract_sentences(output)
 #search using a script on localhost (search.php)
 #the search.php should save seeds with the returned hits to
the query. (save to seeds.txt and then launch crawler)

 sentence_to_url = [SEARCH_API_ENDPOINT +
urllib.parse.quote(sentence) for sentence in sentences]

 return jsonify({'input_and_output': output, 'urls':
sentence_to_url})

 except Exception as e:
 return jsonify({'error': f"Error processing the request: {str(e)}"}),
500

if __name__ == '__main__':
 app.run(host='0.0.0.0')
Please make a good example of what search.php will be like in a
standpoint of a GAFA engineer.

Bard:

As a GAFA engineer, I would design the search.php script to be
efficient and scalable, and to provide the best possible search
results to users. Here is a possible example:

PHP
<?php

// Include the necessary libraries
require_once('vendor/autoload.php');
use Elasticsearch\Client;

// Define the Elasticsearch client
$client = new Client();

// Get the search query from the request
$query = $_GET['query'];

// Perform the search
$results = $client->search([
 'index' => 'my_index',
 'type' => 'my_type',
 'body' => [
 'query' => [
 'match' => [
 'text' => $query
]
]
]
]);

// Get the hit URLs
$hitUrls = [];
foreach ($results['hits']['hits'] as $hit) {
 $hitUrls[] = $hit['_source']['url'];
}

// Save the hit URLs to the `seeds.txt` file
$seedsFile = fopen('seeds.txt', 'w');
foreach ($hitUrls as $hitUrl) {
 fwrite($seedsFile, $hitUrl . PHP_EOL);
}
fclose($seedsFile);

// Launch the crawler
shell_exec('python crawler.py');

// Return the search results to the user
header('Content-Type: application/json');
echo json_encode($hitUrls);

?>
Use code with caution. Learn more

https://bard.google.com/faq#coding

This script uses Elasticsearch to perform the search, as
Elasticsearch is a powerful and scalable search engine that is used
by many of the largest tech companies, including Google,
Facebook, and Amazon. The script also saves the hit URLs to the
seeds.txt file, which can then be used by a crawler to visit the
websites and collect more data.

Here are some additional features that a GAFA engineer might add
to the search.php script:

• Ranking: The script could rank the hit URLs based on a variety
of factors, such as relevance, popularity, and freshness. This
would ensure that the most relevant results are returned to the
user.

• Caching: The script could cache the search results so that they
can be returned to the user more quickly. This would be
especially important for frequently searched queries.

• Personalization: The script could personalize the search
results based on the user's search history and interests. This
would make the search results more relevant to the user and
more likely to lead to a click.

Overall, the search.php script would be a critical component of a
GAFA search engine. It would be responsible for performing the
search and returning the most relevant results to the user.

Tsubasa Kato:

how would you expand the script I wrote earlier?

Here are some ways to expand the script you wrote earlier:

• Add support for multiple LLM providers. In addition to
ChatGPT, you could add support for other LLM providers, such
as Bard, GPT-3, and LaMDA. This would give users more
flexibility in choosing the LLM that best meets their needs.

• Add support for different search API endpoints. In addition to
the local search API endpoint that you are currently using, you
could add support for other search API endpoints, such as the
Google Search API and the Bing Search API. This would allow
users to search a wider range of websites and resources.

• Add support for different output formats. In addition to the
JSON output format that you are currently using, you could
add support for other output formats, such as CSV and XML.
This would make it easier for users to integrate your script with
their existing workflows.

• Add support for different query types. In addition to the single-
keyword query type that you are currently using, you could add
support for other query types, such as natural language
queries and Boolean queries. This would make your script
more versatile and useful for a wider range of tasks.

• Add support for different crawling strategies. In addition to the
simple crawling strategy that you are currently using, you could
add support for other crawling strategies, such as depth-first
crawling and breadth-first crawling. This would allow users to
crawl websites more efficiently and effectively.

In addition to these specific features, you could also expand your
script by making it more modular and reusable. For example, you
could create separate modules for the following tasks:

• Expanding queries using an LLM

• Searching for related seeds using a search API

• Saving seeds to a file

• Launching a crawler

This would make it easier to add new features and functionality to
your script in the future, and it would also make it easier for other
developers to use your script in their own projects.

I hope this gives you some ideas on how to expand your script.

Tsubasa Kato:

can you please think of more ways?

Bard:

Sure, here are some more ideas for expanding the script you wrote:

• Add support for multiple languages. This would allow users to
expand queries and search for related seeds in multiple
languages.

• Add support for different domains. This would allow users to
focus their search on specific domains, such as news, social
media, or e-commerce.

• Add support for different filters. This would allow users to filter
the search results by factors such as date, location, and file
type.

• Add support for different metrics. This would allow users to
track the performance of their script, such as the number of
seeds generated, the number of websites crawled, and the
number of unique links discovered.

• Add support for different notification methods. This would allow
users to be notified when new seeds are generated or when
the crawler has completed crawling a website.

You could also expand your script by adding new features that are
specific to your target audience. For example, if you are targeting
marketing professionals, you could add features that allow users to
identify potential leads and customers. If you are targeting
researchers, you could add features that allow users to extract data
from websites and generate reports.

The possibilities are endless!

Tsubasa Kato:

how would you approach in making a good natural language search
function for this project?

View other drafts by Bard:

Draft 1
To make a good natural language search function for your project, I would approach it in
the following steps:

1. Identify the needs of your users. What kind of information are they looking for?
What kind of language are they likely to use when searching for information?

2. Choose a natural language processing (NLP) model. There are many different NLP
models available, each with its own strengths and weaknesses. Choose a model
that is well-suited to the type of information that your users are looking for and the
language that they are likely to use.

3. Train the NLP model on your data. The more data you train the NLP model on, the
better it will be able to understand and respond to natural language queries.

4. Develop a search algorithm that uses the NLP model to generate search results.
The search algorithm should take into account the user's query, the NLP model's
output, and other factors, such as the relevance and popularity of the search
results.

5. Test and iterate on the search function. Once you have a working prototype of the
search function, test it with real users to get feedback. Use the feedback to iterate
on the search function and improve its performance.

Here are some specific tips for making a good natural language search function:

• Use a variety of NLP techniques. NLP is a vast field, and there are many different
techniques that can be used to understand and respond to natural language. Use a
variety of NLP techniques in your search function to improve its accuracy and
robustness.

• Handle ambiguity. Natural language is often ambiguous, and users may ask queries
in different ways. Your search function should be able to handle ambiguity and
generate relevant results even for ambiguous queries.

• Handle synonyms and misspellings. Users may use synonyms or misspellings in
their queries. Your search function should be able to handle synonyms and
misspellings and generate relevant results even for queries that contain them.

• Personalize the search results. Users are more likely to click on search results that
are relevant to their interests. Your search function should be able to personalize
the search results based on the user's search history and interests.

• Evaluate the search function regularly. It is important to evaluate the search function
regularly to ensure that it is performing well. You can evaluate the search function
by measuring metrics such as click-through rate, precision, and recall.

By following these tips, you can develop a good natural language search function that will
help your users find the information they need quickly and easily.

Draft 2
To make a good natural language search function for this project, I would approach it as
follows:

1. Choose the right LLM. There are many different LLM providers out there, each with
its own strengths and weaknesses. I would carefully evaluate the different options
and choose an LLM that is well-suited for the specific needs of my project.

2. Develop a good query expansion algorithm. The query expansion algorithm is
responsible for taking a user query and generating a set of related seeds. This is a
critical component of the natural language search function, so it is important to
develop a good algorithm that can generate high-quality seeds.

3. Use a good search API. The search API is responsible for searching for websites
and resources that are related to the generated seeds. I would use a search API
that is comprehensive and reliable.

4. Develop a good ranking algorithm. The ranking algorithm is responsible for ranking
the search results based on their relevance to the user query. This is another critical
component of the natural language search function, so it is important to develop a
good ranking algorithm that can produce accurate and relevant results.

5. Evaluate the system and make improvements. Once I have developed a working
prototype of the natural language search function, I would evaluate it thoroughly to
identify areas for improvement. I would then make the necessary changes to
improve the system's performance.

Here are some specific tips for developing a good natural language search function:

• Use a variety of LLM features. LLMs can perform a variety of tasks, such as
generating text, translating languages, and answering questions. I would use a
variety of LLM features to develop a comprehensive and powerful natural language
search function.

• Use a variety of search results. In addition to returning the traditional list of
websites, I would also return other types of search results, such as images, videos,
and news articles. This would make the search results more informative and
engaging for users.

• Personalize the search results. I would personalize the search results based on the
user's search history and interests. This would make the search results more
relevant to the user and more likely to lead to a click.

• Make the search function easy to use. I would design the search function to be easy
to use for users of all skill levels. The search interface should be simple and
intuitive, and the search results should be easy to navigate.

I hope this gives you some ideas on how to develop a good natural language search
function for your project.

Draft 3
To make a good natural language search function for your project, I would follow these
steps:

1. Identify the needs of your users. What kind of information are they trying to find?
What kind of language are they using? Once you understand your users' needs,
you can design your search function to meet them.

2. Choose the right natural language processing (NLP) technology. There are many
different NLP technologies available, each with its own strengths and weaknesses.
Choose a technology that is well-suited to the type of search function you want to
build.

3. Train your NLP model. Once you have chosen an NLP technology, you need to train
a model on your data. The data should include a variety of examples of the types of
queries that your users are likely to enter.

4. Implement your search function. Once your model is trained, you need to implement
it into your application. This will involve integrating the model with your search
engine and other backend systems.

5. Test and refine your search function. Once your search function is implemented,
you need to test it thoroughly to make sure it is working as expected. You should
also collect feedback from your users and use it to refine your search function over
time.

Here are some additional tips for making a good natural language search function:

• Use a variety of NLP techniques. NLP is a broad field, and there are many different
techniques that can be used to improve the accuracy of a search function. For
example, you can use techniques such as stemming, lemmatization, and part-of-
speech tagging to better understand the meaning of the query.

• Use a semantic search engine. Semantic search engines are designed to
understand the meaning of queries and return results that are relevant to the user's
intent. This is in contrast to traditional keyword-based search engines, which simply
match the query to keywords in the document.

• Personalize the search results. You can personalize the search results by taking
into account the user's search history, interests, and location. This will make the
results more relevant to the user and more likely to lead to a click.

• Make the search function easy to use. The search function should be easy to use
and understand. The user should be able to enter a query in their natural language
and get back relevant results.

I hope this helps!

Bard:

To make a good natural language search function for your project, I
would approach it in the following steps:

1. Identify the needs of your users. What kind of information are
they looking for? What kind of language are they likely to use
when searching for information?

2. Choose a natural language processing (NLP) model. There
are many different NLP models available, each with its own
strengths and weaknesses. Choose a model that is well-suited
to the type of information that your users are looking for and
the language that they are likely to use.

3. Train the NLP model on your data. The more data you train the
NLP model on, the better it will be able to understand and
respond to natural language queries.

4. Develop a search algorithm that uses the NLP model to
generate search results. The search algorithm should take into
account the user's query, the NLP model's output, and other
factors, such as the relevance and popularity of the search
results.

5. Test and iterate on the search function. Once you have a
working prototype of the search function, test it with real users
to get feedback. Use the feedback to iterate on the search
function and improve its performance.

Here are some specific tips for making a good natural language
search function:

• Use a variety of NLP techniques. NLP is a vast field, and there
are many different techniques that can be used to understand
and respond to natural language. Use a variety of NLP
techniques in your search function to improve its accuracy and
robustness.

• Handle ambiguity. Natural language is often ambiguous, and
users may ask queries in different ways. Your search function
should be able to handle ambiguity and generate relevant
results even for ambiguous queries.

• Handle synonyms and misspellings. Users may use synonyms
or misspellings in their queries. Your search function should be
able to handle synonyms and misspellings and generate
relevant results even for queries that contain them.

• Personalize the search results. Users are more likely to click
on search results that are relevant to their interests. Your
search function should be able to personalize the search
results based on the user's search history and interests.

• Evaluate the search function regularly. It is important to
evaluate the search function regularly to ensure that it is

performing well. You can evaluate the search function by
measuring metrics such as click-through rate, precision, and
recall.

By following these tips, you can develop a good natural language
search function that will help your users find the information they
need quickly and easily.

