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1. Introduction: The Paradox of Noise in Quantum 
Computation 
 
The prevailing narrative in the development of quantum computing technologies has been 
defined by a singular, adversarial relationship with noise. In the context of the Noisy 
Intermediate-Scale Quantum (NISQ) era, the fragility of quantum states—manifested through 
decoherence, gate infidelity, crosstalk, and readout errors—is predominantly viewed as the 
primary barrier to achieving computational advantage or "quantum supremacy".1 The 
orthodox engineering objective is the rigorous suppression of these errors, employing 
increasingly sophisticated techniques such as Zero-Noise Extrapolation (ZNE), Probabilistic 
Error Cancellation (PEC), and ultimately, the implementation of fault-tolerant Quantum Error 
Correction (QEC) codes.1 These methods, while essential for cryptographic and algebraic 
algorithms like Shor’s or Grover’s, treat environmental interaction as a purely destructive force 
that erodes information and collapses the delicate superposition required for computation. 
However, a parallel and theoretically rich paradigm is emerging at the intersection of open 
quantum systems theory, non-equilibrium thermodynamics, and machine learning. This 
paradigm challenges the binary categorization of noise as strictly detrimental. It posits that in 
specific computational domains—particularly those involving probabilistic decision-making, 
optimization in non-convex landscapes, and the detection of weak signals—noise acts not 
merely as an entropic sink, but as a computational resource.3 This perspective is grounded in 
the observation that biological and physical systems often exploit thermal fluctuations to drive 
state transitions, enhance sensitivity, and explore solution spaces efficiently. 
This report presents an exhaustive analysis of the methodology for harnessing quantum noise 
in decision-making algorithms, specifically leveraging the Qiskit software development kit 
(SDK). We explore the theoretical mechanisms of Quantum Stochastic Resonance (QSR), 
Entropic Exploration in Reinforcement Learning (RL), and Noise-Assisted Variational 



Optimization, demonstrating how the inherent imperfections of NISQ devices can be 
mathematically mapped to functional algorithmic hyperparameters. By shifting the design 
philosophy from "Noise-Mitigation" to "Noise-Awareness" and "Noise-Exploitation," we 
outline a framework where the quantum processor functions as a tunable stochastic engine, 
capable of solving complex decision problems by virtue of its coupling to the environment. 
 
1.1 The NISQ Landscape: Constraints as Features 

 
The current generation of quantum hardware is defined by its limitations. Processors ranging 
from 50 to over 1,000 qubits are now available, yet they lack the fidelity required for deep, 
error-corrected circuits.1 The fidelity of two-qubit gates often lingers below the thresholds 
necessary for surface codes, and coherence times ($T_1$ and $T_2$) restrict circuit depth.5 

In traditional algorithms, these constraints dictate a hard ceiling on performance. However, for 
decision-making algorithms, which are inherently probabilistic, the NISQ regime offers a 
unique advantage. Decision-making under uncertainty often requires the generation of 
entropy to explore alternative hypotheses or actions. Classical computers must expend 
computational resources to generate pseudo-random numbers to simulate this uncertainty. In 
contrast, a NISQ device generates true, physical entropy "for free" via its coupling to the 
thermal bath.6 The challenge, and the focus of this report, lies in characterizing this entropy 
and shaping it—using control pulses and circuit design—to drive the system toward optimal 
decision manifolds rather than maximally mixed states.7 

 

1.2 Theoretical Foundations: Open Systems and Non-Markovian 
Dynamics 

 
The theoretical basis for beneficial noise is found in the transition from closed-system 
dynamics (Unitary evolution) to open-system dynamics. While a closed system preserves 
information perfectly, it cannot easily "forget" suboptimal information, often requiring complex 
interference patterns to amplify correct answers. Decision making, by definition, is a 
dissipative process; it involves the convergence from a set of many possibilities to a single 
choice. 
The evolution of such a system is described by the Lindblad Master Equation, which accounts 
for the unitary dynamics driven by the system Hamiltonian $H$ and the dissipative dynamics 
driven by the interaction with the environment: 
$$ \frac{d\rho}{dt} = -i[H, \rho] + \sum_k \gamma_k \left( L_k \rho L_k^\dagger - \frac{1}{2} 
{L_k^\dagger L_k, \rho} \right) $$ 
Here, $\rho$ represents the density matrix of the decision engine, $H$ represents the logic of 
the decision problem (encoded in gates), and $L_k$ represents the noise channels (e.g., 
amplitude damping, dephasing) with rates $\gamma_k$.8 

Crucially, recent research indicates that non-Markovian effects—where the environment 



retains a "memory" of the system's past states—can lead to the formation of bound states in 
the agent-noise spectrum. These bound states can protect specific coherences or drive the 
system into preferred subspaces that correspond to optimal decision strategies, effectively 
creating "noise-resilient" subspaces.8 This suggests that by tuning the coupling strength (via 
gate timing and pulse control in Qiskit), one can manipulate the steady state of the system to 
align with the solution to a decision problem. 

 

2. Quantum Stochastic Resonance (QSR): Physics and 
Implementation 
 
 
2.1 The Phenomenon of Stochastic Resonance 

 
Stochastic Resonance (SR) is a counter-intuitive non-linear phenomenon wherein the addition 
of noise to a system improves the detection of weak signals. First identified in the context of 
ice ages and later in biological sensory neurons, SR occurs when a weak periodic signal is 
insufficient to drive a system over a potential barrier. When random noise is added, it provides 
the supplemental energy required for the system to hop over the barrier. Crucially, this barrier 
crossing becomes synchronized with the weak input signal at an optimal noise intensity, 
maximizing the Signal-to-Noise Ratio (SNR) of the output.4 

In the quantum regime, this phenomenon is enriched by the presence of quantum tunneling. 
Quantum Stochastic Resonance (QSR) describes a scenario where a quantum system (e.g., a 
qubit or a spin) is subjected to a weak driving force and a noise bath. Even if the thermal 
energy is insufficient for classical activation, and the driving force is too weak for deterministic 
transition, the interplay between tunneling oscillations and noise-induced decoherence can 
lead to a resonant amplification of the signal.11 

 

2.2 The "Forbidden Interval" and Threshold Mechanics 

 
For decision-making applications, QSR is particularly relevant in threshold detection 
tasks—determining if a signal exists when it is below the sensitivity floor of the sensor. 
Theoretical models of lossy bosonic channels indicate that SR effects occur specifically when 
the detection threshold lies outside a "forbidden interval" determined by the system's 
parameters.13 

In a qubit-based decision model, the "barrier" is the measurement collapse in the 
computational basis ($Z$-basis). A weak decision signal might be encoded as a small rotation 
angle $\theta$ away from the ground state $|0\rangle$. In a noiseless, finite-sampling regime, 
this small rotation might never result in a $|1\rangle$ measurement, leading to a false negative 



(failure to detect). However, the introduction of a relaxation channel (noise) can bias the 
probability distribution. If the relaxation rate is tuned to the periodicity or amplitude of the 
signal encoding, the probability of measuring $|1\rangle$ can be enhanced specifically when 
the signal is present, effectively lowering the detection threshold via noise assistance.3 

 

2.3 Algorithmic Implementation in Qiskit 

 
To operationalize QSR for decision making, we model the qubit as a noisy detector. The 
objective is to find the optimal noise parameters that maximize the mutual information 
between the input hypothesis (signal) and the measurement outcome (decision). 
 
2.3.1 The Parametric Noise Circuit 

 
The implementation utilizes qiskit and qiskit_aer to simulate a tunable environment. The 
workflow requires moving beyond standard "device noise models" derived from backend 
properties and instead constructing a parameterized noise model where the noise strength is 
a control variable. 
Circuit Structure: 

1.​ Initialization: Prepare the qubit in the ground state $|0\rangle$. 
2.​ Signal Encoding: Apply the weak decision signal as a rotation $R_y(\epsilon)$, where 

$\epsilon$ represents the magnitude of the external stimulus (e.g., a market signal, a 
sensor reading). 

3.​ Noise Injection: Apply a specific noise channel. For QSR, bit-flip errors or thermal 
relaxation errors are most effective. In Qiskit, this is achieved using 
qiskit_aer.noise.thermal_relaxation_error or pauli_error. 

4.​ Measurement: Measure in the $Z$-basis. 
5.​ Iterative Tuning: Vary the noise parameter (e.g., the probability $p$ of the Pauli error 

or the $T_1$ time) to find the resonance peak. 
Table 1: QSR Circuit Components and Qiskit Implementation 
Component Physical Role Qiskit Implementation 
Weak Signal Input Stimulus QuantumCircuit.ry(theta, 

qubit) where $\theta \ll \pi/2$ 
Potential Barrier Decision Threshold QuantumCircuit.measure(qubit

, cbit) 
Noise Source Stochastic Driver NoiseModel.add_all_qubit_qua

ntum_error(error, ['id', 'ry']) 
Resonance Tuning Control Parameter Sweeping $T_1$ in 

thermal_relaxation_error(t1, t2, 
time) 

Decision Output Response Variable result.get_counts() 



$\rightarrow$ Signal-to-Noise 
Ratio (SNR) 

 
2.3.2 Constructing the Noise Model 

 
The qiskit_aer.noise module allows for the granular construction of these errors. A critical 
aspect is ensuring the noise is applied during the gate operation or the idle time, mimicking 
the continuous interaction with a bath. 
 
Python 
 
 
# Conceptual representation of Noise Model Construction for QSR​
from qiskit_aer.noise import NoiseModel, thermal_relaxation_error, depolarizing_error​
​
def build_resonant_noise_model(t1_param, t2_param, gate_time):​
    """​
    Constructs a noise model with specific thermal relaxation parameters​
    to test for stochastic resonance conditions.​
    """​
    noise_model = NoiseModel()​
    ​
    # Create the error object​
    # T1: Relaxation time (energy loss)​
    # T2: Dephasing time (coherence loss)​
    error_thermal = thermal_relaxation_error(t1_param, t2_param, gate_time)​
    ​
    # Apply to relevant gates (e.g., Identity and Rotation)​
    # The noise acts "during" the gate execution​
    noise_model.add_all_qubit_quantum_error(error_thermal, ["id", "rz", "sx", "ry"])​
    ​
    return noise_model​
 
By running the weak signal circuit across a spectrum of t1_param values, the decision maker 
will observe a non-monotonic response curve: the detection probability (or SNR) will rise to a 
maximum at a specific noise level before falling off as decoherence overwhelms the system.15 
This peak is the QSR operating point. 
 
2.4 Signal Denoising via Amplitude Amplification 



 
Beyond simple detection, QSR principles can be applied to signal denoising. Recent literature 
proposes a quantum algorithm for signal denoising that performs thresholding in the 
frequency domain. This method utilizes amplitude amplification (Grover-like iterations) 
combined with an adaptive threshold determined by local mean values. Interestingly, 
numerical results indicate that this algorithm is not only robust to noise but can outperform 
existing quantum algorithms specifically in the presence of quantum noise.3 The noise 
effectively smooths the thresholding function, preventing the "hard" cutoff artifacts often 
seen in classical signal processing, and allowing for a more organic separation of signal from 
background. 
 
2.5 Practical Application: The Quantum Threshold Detector 

 
In a practical decision-making scenario—such as high-frequency trading or anomaly 
detection in cybersecurity—the "Quantum Threshold Detector" operates as follows: 

1.​ Incoming data streams are normalized and mapped to rotation angles $\epsilon_i$. 
2.​ The quantum processor is calibrated to its "Resonance Point" ($p_{opt}$) using a known 

pilot signal. 
3.​ The data stream is processed through the noisy circuit. 
4.​ The measurement output bitstring density is monitored. A spike in $|1\rangle$ counts 

indicates a signal crossing the threshold, assisted by the noise floor.10 

This approach leverages the inherent sensitivity of the qubit to environmental coupling, 
transforming the "bug" of sensitivity into the "feature" of a highly responsive sensor.16 

 

3. Entropic Exploration in Reinforcement Learning (RL) 
 
 
3.1 The Exploration-Exploitation Dilemma 

 
Reinforcement Learning (RL) is the primary computational framework for sequential decision 
making. An RL agent learns to maximize cumulative reward by interacting with an environment. 
A central challenge in RL is the Exploration-Exploitation Dilemma: the agent must balance 
choosing the action it currently believes is best (exploitation) with trying new actions to 
discover potentially superior strategies (exploration). 
Classical RL algorithms address this using pseudo-random heuristics. The $\epsilon$-greedy 
method selects a random action with probability $\epsilon$. Boltzmann exploration selects 
actions based on a softmax distribution of their estimated values, modulated by a 
"temperature" parameter $\tau$. While effective, these methods are computationally artificial; 
the randomness is injected via a Pseudo-Random Number Generator (PRNG) and does not 



reflect any intrinsic property of the agent's knowledge or the environment.17 

 

3.2 Quantum Noise as Intrinsic Exploration 

 
Quantum Reinforcement Learning (QRL) introduces a paradigm shift by utilizing the intrinsic 
probabilistic nature of quantum measurement for exploration. A Variational Quantum Circuit 
(VQC) acting as a policy network ($\pi_\theta(s)$) outputs a quantum state 
$|\psi(\theta)\rangle$. The probability of selecting action $a$ is given by Born's rule: $P(a) = 
|\langle a | \psi(\theta) \rangle|^2$. 
In a noiseless quantum system, the agent might converge to a deterministic policy (a pure 
state corresponding to a single basis vector) too quickly, leading to suboptimal local minima. 
However, on NISQ hardware, the state is a mixed state density matrix $\rho$. For a 
depolarizing noise channel with probability $p$, the state can be approximated as: 
 
$$\rho_{noisy} = (1-p)\rho_{ideal} + p \frac{I}{d}$$ 
where $I/d$ represents the maximally mixed state (uniform distribution). 
This equation reveals a profound connection: Quantum noise ($p$) is physically 
isomorphic to the exploration rate ($\epsilon$) in classical RL. 

●​ When $p$ is high (high noise), the policy approaches a uniform distribution, forcing the 
agent to explore the action space randomly. 

●​ When $p$ is low (low noise), the policy is dominated by $\rho_{ideal}$, allowing the 
agent to exploit its learned parameters.19 

 

3.3 The Physics of "Bound States" in Agent-Noise Systems 

 
The interaction between the agent (quantum circuit) and the noise is not merely a blurring of 
probabilities. Advanced theoretical treatments using non-Markovian dynamics have identified 
"bound states" in the energy spectrum of the total agent-noise system.8 

In the context of a quantum eigensolver agent, the decoherence effect—typically modeled 
under the Born-Markov approximation as strictly destructive—can be suppressed. When the 
interaction time between the agent and the environment is tuned correctly, the system forms 
a bound state that prevents the complete dissipation of information. This effectively "restores" 
the QRL performance to that of the noiseless case, but with the added benefit of the initial 
noise-induced exploration. This suggests a mechanism for Noise-Resilient QRL, where the 
agent utilizes the noise for early-stage exploration but naturally settles into a protected 
subspace for late-stage exploitation.8 

 

3.4 Implementation: The Noise-Annealed Q-Policy 

 



To implement this in Qiskit, we design a training curriculum that treats the backend noise 
model as a dynamic hyperparameter, analogous to the "cooling schedule" in simulated 
annealing. 
 
3.4.1 Dynamic Noise Scheduling 

 
Instead of using a fixed backend, the training loop utilizes AerSimulator with a variable 
NoiseModel. 
Algorithm 1: Noise-Annealed Quantum Policy Gradient 

1.​ Initialization: 
○​ Initialize PQC parameters $\theta$. 
○​ Set initial noise level $p_{start}$ (e.g., 0.1) and decay rate $\lambda$ (e.g., 0.99). 
○​ Define the target noise floor $p_{min}$ (representing the intrinsic hardware error 

floor). 
2.​ Training Loop (Epoch $t$): 

○​ Update Noise Model:​
​
$$p_t = \max(p_{min}, p_{start} \times \lambda^t)$$​
​
Construct NoiseModel with depolarizing_error(p_t, num_qubits).​
Note: Updating the noise model in Qiskit requires re-instantiating the NoiseModel 
object and passing it to backend.set_options.20 

○​ Execute Policy: Run the PQC on the simulator with the current NoiseModel. 
○​ Action Selection: 

■​ Method A (Direct Sampling): Measure the circuit. The bitstring outcome is 
the action. The high noise $p_t$ ensures diversity in these samples.22 

■​ Method B (Softmax Expectation): Measure expectation values $\langle Z_i 
\rangle$. Compute action probabilities via Softmax. High noise dampens 
$\langle Z_i \rangle \to 0$, which flattens the Softmax distribution 
(effectively increasing temperature).23 

○​ Reward Collection: Execute action, observe reward $r_t$. 
○​ Parameter Update: Update $\theta$ using Policy Gradient (e.g., REINFORCE or 

PPO) based on the noisy rewards. 
3.​ Result: The agent begins with "high temperature" exploration driven by the simulated 

noise. As training proceeds, the noise "cools," and the agent's policy crystallizes around 
the optimal strategy. This removes the need for coding explicit $\epsilon$-greedy logic; 
the physics of the simulation handles the exploration-exploitation trade-off.17 

 

3.5 Softmax Action Selection and Temperature Scaling 

 



A rigorous mapping exists between quantum observables and the Boltzmann distribution used 
in RL. In a Softmax-VQC policy, the probability of action $a$ is defined as: 
$$ \pi_\theta(a|s) = \frac{e^{\beta \langle O_a \rangle_{s, \theta}}}{\sum_{a'} e^{\beta \langle 
O_{a'} \rangle_{s, \theta}}} $$ 
where $\langle O_a \rangle$ is the expectation value of an observable associated with action 
$a$ (e.g., Pauli-Z on specific qubits), and $\beta$ is the inverse temperature. 
Under a depolarizing channel $\mathcal{E}_p$, the expectation value of any traceless 
observable (like Pauli-Z) is scaled by a factor $(1-p)^D$, where $D$ is the circuit depth.26 

 

$$\langle O_a \rangle_{noisy} = (1-p)^D \langle O_a \rangle_{ideal}$$ 
Substituting this into the Softmax equation: 
 
 
$$\pi_{noisy}(a|s) \propto e^{\beta (1-p)^D \langle O_a \rangle_{ideal}}$$ 
The term $\beta_{eff} = \beta (1-p)^D$ acts as an effective inverse temperature. 

●​ High noise ($p \to 1$) $\implies \beta_{eff} \to 0 \implies$ Uniform distribution (High 
Exploration). 

●​ Low noise ($p \to 0$) $\implies \beta_{eff} \to \beta \implies$ Peaked distribution 
(Exploitation). 

This derivation proves that quantum noise naturally implements temperature scaling. By 
simply running the circuit on a noisier backend (or modifying the simulator noise), one 
automatically increases the exploration entropy of the agent without changing the classical 
post-processing code.23 

 

4. Noise-Assisted Optimization in Variational 
Algorithms 
 
 
4.1 The Landscape of VQA: Barren Plateaus and Local Minima 

 
Variational Quantum Algorithms (VQAs), such as the Variational Quantum Eigensolver (VQE) 
and the Quantum Approximate Optimization Algorithm (QAOA), essentially function as 
decision-making loops. The classical optimizer decides how to update the circuit parameters 
$\theta$ to minimize a cost function $C(\theta)$. 
Two primary pathologies plague these landscapes: 

1.​ Barren Plateaus: Regions where the gradient vanishes exponentially with system size, 
making optimization impossible.19 

2.​ Local Minima: Non-convex landscapes where the optimizer gets trapped in suboptimal 
basins. 



While noise is generally a cause of barren plateaus (noise-induced barren plateaus), emerging 
research suggests a "sweet spot" where noise can actually aid optimization.7 

 

4.2 Noise-Induced Equalization (NIE) 

 
The concept of Noise-Induced Equalization (NIE) posits that a controlled level of noise can 
reshape the optimization landscape in a beneficial way. While heavy noise flattens the 
landscape entirely (destroying information), a modest noise level $p^*$ increases the 
relevance of less influential parameters relative to the noiseless case. This makes the 
curvature of the landscape more uniform across different directions, effectively 
preconditioning the optimization problem.7 

In the vicinity of this optimal noise level $p^*$, the reshaping of the landscape favors 
parameter space exploration over exploitation. The noise smoothes out high-frequency 
"roughness" (shallow local minima) while preserving the global structure of the cost function. 
This allows the optimizer to traverse the landscape more broadly, avoiding premature 
convergence to poor local optima.29 

 

4.3 Noise-Directed Adaptive Remapping (NDAR) 

 
For combinatorial optimization problems (like Max-Cut solved via QAOA), the Noise-Directed 
Adaptive Remapping (NDAR) technique explicitly leverages noise information. In this 
framework, the algorithm uses the noisy output distribution to identify "attractor 
states"—solutions that appear frequently despite (or because of) the noise.28 

Rather than fighting the noise, NDAR assumes that the noise might preferentially relax the 
system into low-energy states (analogous to thermal relaxation). The algorithm iteratively 
fixes variables (decimates the problem) based on the consensus of the noisy samples. This is 
a "greedy" approach guided by the noisy quantum distribution. Research indicates that for 
certain problem classes, NAQAs (Noise-Adaptive Quantum Algorithms) like NDAR significantly 
outperform "vanilla" QAOA in noisy environments, effectively utilizing the noise to identify 
stable variable assignments.28 

 

4.4 Stochastic Tunneling and Escaping Saddle Points 

 
The mechanism of escaping local minima via noise is analogous to Stochastic Tunneling. In 
classical optimization, Stochastic Gradient Descent (SGD) relies on the noise inherent in 
mini-batch sampling to jump out of local basins. In VQAs, the intrinsic shot noise (finite 
sampling) and gate noise provide this "kick." 
Experiments on IBM Quantum hardware have demonstrated that optimizations run with 
perfect gradients (simulated) often get stuck in saddle points, whereas optimizations run with 



noisy gradients (from real hardware or noisy simulators) successfully escape these points and 
converge to the true minimum.31 The noise provides the necessary "thermal energy" to 
surmount the energy barriers surrounding the saddle point. 

 

5. Quantum Annealing: The Role of Thermalization and 
Pausing 
 
While the primary focus of this report is gate-based Qiskit implementation, the principles of 
beneficial noise are most mature in the field of Quantum Annealing (QA). Understanding QA 
mechanisms provides valuable insights for gate-based QAOA implementations. 
 
5.1 Thermal Fluctuations as a Resource 

 
Quantum Annealing relies on the Adiabatic Theorem, which states that a system remains in its 
ground state if the Hamiltonian changes slowly enough. However, at non-zero temperature, 
the system is subject to thermal excitations. 
Historically, thermalization was seen as an error source. However, recent studies on "Pausing" 
in quantum annealing have shown that stopping the anneal (holding the Hamiltonian constant) 
for a duration can improve success probabilities. This counter-intuitive result is explained by 
beneficial non-equilibrium coupling. If the system is in an excited state (an error), pausing 
allows the system to thermally relax down to the ground state, provided the background 
temperature is low enough relative to the energy gap.32 

 

5.2 Simulating Annealing Dynamics in Qiskit 

 
While Qiskit is gate-based, one can simulate annealing-inspired protocols using QAOA or 
discretized adiabatic evolution (Trotterization). To exploit the "thermal relaxation" benefit 
observed in annealers, one can introduce Delay Instructions into the Qiskit circuit. 
Implementation Strategy: 

1.​ Trotterized Evolution: Implement the adiabatic path $H(t) = (1-s)H_X + sH_Z$ using 
alternating layers of rotation gates. 

2.​ Mid-Circuit Pausing: Insert QuantumCircuit.delay(duration, unit='dt') instructions 
between Trotter steps. 

3.​ Noise Model: Apply a thermal_relaxation_error to the delay instructions. 
By tuning the duration of the delay, one allows the qubits to interact with the thermal bath. If 
the qubit state is currently "hotter" (higher energy) than the bath, the delay allows it to 
dissipate energy (relax toward $|0\rangle$), potentially correcting errors that occurred during 
the unitary evolution steps.33 This mimics the "pause" benefit in gate-based hardware. 



 

6. Characterizing the Resource: Noise Learning and 
Spectroscopy 
 
To effectively exploit noise, one must first characterize it with high precision. Treating noise as 
a generic "depolarizing channel" is insufficient for advanced noise-assisted algorithms. We 
must distinguish between coherent errors, incoherent noise, and spatial correlations. 
 
6.1 Reinforcement Learning for Noise Characterization 

 
Standard noise characterization techniques like Randomized Benchmarking (RB) or 
Tomography are resource-intensive and often rely on assumptions (e.g., gate-independent 
noise). Recent breakthroughs utilize Reinforcement Learning (RL) to learn the noise model 
itself.25 

In this approach, an RL agent interacts with the quantum device (or a simulator of it). The 
"state" is the current estimate of the noise channel parameters (e.g., Kraus operators). The 
"action" is the selection of a probe circuit to run. The "reward" is the prediction accuracy of 
the noise model on a validation set. This RL-driven approach minimizes heuristic assumptions 
and can capture complex, non-Markovian noise patterns that standard RB misses.25 

 

6.2 Root Space Decomposition and Spatial Correlations 

 
A significant limitation of simple noise models is the assumption of independent errors. In 
reality, noise spreads across space and time. Researchers at Johns Hopkins APL have 
developed a framework using Root Space Decomposition to analyze how noise propagates 
through the system.35 

This mathematical technique simplifies the analysis of the system's symmetry, allowing for the 
classification of noise types based on how they impact the system's root space. By identifying 
these symmetries, one can construct noise models that accurately reflect the spatial 
correlations of the device. 
Why this matters for Decision Making: 
If noise is spatially correlated (e.g., crosstalk between qubit 0 and qubit 1), a decision 
algorithm can exploit this. For example, in a multi-agent RL scenario where Agent A (Qubit 0) 
and Agent B (Qubit 1) need to coordinate, the correlated noise provides a "shared source of 
randomness" or "common cause" that can naturally synchronize their exploration strategies 
without explicit communication.37 

 



7. Technical Implementation Framework in Qiskit 
 
This section provides a granular technical guide to constructing the "Noise-Aware" decision 
engine using Qiskit. 
 
7.1 Advanced NoiseModel Construction 

 
To use noise as a parameter, we must build custom NoiseModel objects rather than relying on 
NoiseModel.from_backend(). 
Key Classes: 

●​ qiskit_aer.noise.NoiseModel: The container. 
●​ qiskit_aer.noise.QuantumError: The general error object. 
●​ qiskit_aer.noise.ReadoutError: For measurement errors. 

Code Logic for Tunable Noise: 
 
Python 
 
 
import numpy as np​
from qiskit import QuantumCircuit, transpile​
from qiskit_aer import AerSimulator​
from qiskit_aer.noise import NoiseModel, depolarizing_error, thermal_relaxation_error​
​
def get_tunable_backend(noise_level, error_type='depolarizing'):​
    """​
    Returns a simulator with a specific noise level.​
    """​
    noise_model = NoiseModel()​
    ​
    if error_type == 'depolarizing':​
        # Create a 1-qubit error​
        error_1q = depolarizing_error(noise_level, 1)​
        # Create a 2-qubit error (usually higher)​
        error_2q = depolarizing_error(noise_level * 10, 2)​
        ​
        # Apply to standard basis gates​
        noise_model.add_all_qubit_quantum_error(error_1q, ['u1', 'u2', 'u3', 'rz', 'sx', 'x'])​
        noise_model.add_all_qubit_quantum_error(error_2q, ['cx'])​
        ​
    elif error_type == 'thermal':​



        # Map noise_level to T1 (inverse relationship)​
        # Higher noise_level -> Shorter T1​
        t1 = 100e-6 / (1 + noise_level * 10) ​
        t2 = t1 * 0.5 # Example relation​
        gate_time = 1e-7 # 100 ns​
        ​
        error_thermal = thermal_relaxation_error(t1, t2, gate_time)​
        noise_model.add_all_qubit_quantum_error(error_thermal, ['id', 'rz', 'sx', 'x'])​
        ​
    # Initialize Simulator​
    sim = AerSimulator(noise_model=noise_model)​
    return sim​
​
# Usage in an RL Loop​
current_noise = 0.5 # High exploration​
backend = get_tunable_backend(current_noise)​
#... execute circuit...​
 
 
7.2 Simulating Large-Scale Noisy Systems with Dask 

 
Simulating noise is computationally expensive. A noisy simulation with $N$ shots typically 
requires significantly more runtime than an ideal statevector simulation, especially if using a 
density matrix simulator which scales as $4^N$ rather than $2^N$.39 

To scale this decision framework to relevant problem sizes (20+ qubits), one should leverage 
Dask Clusters for parallelization. Qiskit Aer supports distributed simulation via Dask.41 

Implementation: 
1.​ Setup Dask Client: Initialize a Dask client connected to a cluster of CPUs/GPUs. 
2.​ Aer Configuration: Set max_job_size and max_shot_size in AerSimulator. 
3.​ Execution: When backend.run() is called with a large number of circuits (e.g., a batch of 

RL episodes) or a large number of shots, Aer automatically splits the workload across 
the Dask workers. 

This capability is essential for "Noise Learning" and "Noise-Adaptive Optimization" where 
thousands of noisy circuit evaluations are required to estimate gradients or characterize error 
channels.41 

 

7.3 Dynamic Circuits and Feedforward 

 
Qiskit's support for Dynamic Circuits (control flow, mid-circuit measurement) enables 
real-time noise exploitation. One can measure a qubit, and based on the noisy outcome, 



dynamically branch to a different sub-circuit.42 

Scenario: Stochastic Correction. 
A mid-circuit measurement checks a parity stabilizer. If an error is detected (noise event), 
instead of correcting it (QEC), the algorithm branches to a "high-risk, high-reward" decision 
path, operating on the assumption that the system has been "thermally kicked" into a new 
region of the solution space. This effectively implements the "Pausing" or "Tunneling" logic 
within the circuit execution itself, utilizing if_else constructs in Qiskit.42 

 

8. Challenges and Strategic Considerations 
 
While the exploitation of noise offers significant potential, it is accompanied by non-trivial 
challenges that must be managed. 
 
8.1 The "Goldilocks" Zone and Instability 

 
The primary operational challenge is finding the optimal noise level $p^*$. This value is not 
universal; it depends on the specific problem instance (e.g., the landscape curvature) and the 
circuit depth. 

●​ Too little noise: The system remains trapped in local minima or fails to exhibit 
stochastic resonance. 

●​ Too much noise: The system enters the "Zeno" regime or becomes maximally mixed, 
destroying all decision information.7 

Furthermore, real hardware is temporally unstable. $T_1$ and $T_2$ fluctuate due to two-level 
system (TLS) defects and temperature drifts.35 A noise-aware algorithm calibrated for the 
noise profile at 9:00 AM might be suboptimal by 12:00 PM. This necessitates Adaptive 
Recalibration, where the RL agent or optimizer continuously monitors the noise spectrum 
(using the Noise Learning techniques from Section 6) and adjusts its strategy accordingly. 
 
8.2 Non-Markovian Memory Effects 

 
Most simulations (and the standard Lindblad equation) assume Markovian noise 
(memoryless). However, real experimental noise often exhibits non-Markovianity (colored 
noise).8 While this complicates simulation, it also offers a resource: Memory. If the bath 
retains information about the system's past, this feedback loop can be utilized to preserve 
coherence (via bound states) or to encode temporal dependencies in the decision problem 
(e.g., time-series prediction) directly into the bath interaction.9 

 



8.3 Simulation vs. Reality Gap 

 
There is a risk that algorithms optimized for simulated noise (e.g., ideal depolarizing channels) 
will fail on real hardware with coherent errors and crosstalk. The "Noise-Resilient QRL" 
utilizing bound states 8 specifically relies on the spectral properties of the noise. If the real 
noise spectrum differs from the theoretical model, the bound state may not form. This 
underscores the need for Hardware-in-the-Loop (HIL) training, where the decision engine is 
trained directly on the QPU rather than solely on a simulator.44 

 

9. Case Studies and Future Outlook 
 
 
9.1 Case Study: Financial Risk Analysis 

 
In credit risk analysis 45, the goal is to estimate the tail risk of a portfolio (a rare event). This is 
a threshold detection problem. A QSR-based circuit can be employed where the portfolio 
parameters modulate the rotation angles of qubits. By tuning the device noise (or adding 
synthetic noise via Pauli gates), the system can be brought to resonance with the "default 
event" signal, enhancing the estimation of Value at Risk (VaR) in the high-noise/low-signal 
regime. 
 
9.2 Case Study: Quantum Image Segmentation 

 
In image processing, segmentation relies on thresholding to separate objects from the 
background. A quantum image segmentation algorithm using an adaptive threshold has been 
demonstrated on IBM Q platforms.46 By utilizing the noise in the quantum readout, the 
threshold becomes "soft" or probabilistic. This stochastic thresholding has been shown to be 
more robust to artifacts in the input image than a hard, deterministic threshold, effectively 
using quantum noise to smooth the segmentation map. 
 
9.3 Future Outlook: Synthetic Noise in Fault-Tolerant Era 

 
As hardware advances toward fault tolerance, the physical noise will be suppressed. However, 
the utility of noise described in this report suggests that the algorithms of the future may 
require Synthetic Noise Injection. Just as modern neural networks use "Dropout" (artificial 
noise) to prevent overfitting, future Fault-Tolerant Quantum Computers (FTQC) may include 



logical operations designed solely to inject controlled entropy into the system to facilitate 
exploration and regularization.7 

 

10. Conclusion 
 
The transition from the NISQ era to the fault-tolerant era is not merely a process of cleaning 
up errors; it is a process of understanding the thermodynamic relationship between 
information, energy, and noise. This report establishes that for a broad class of 
decision-making problems—ranging from signal detection to reinforcement learning and 
optimization—noise is not an adversary but an untapped resource. 
By leveraging the Qiskit framework's advanced noise modeling, dynamic circuit capabilities, 
and simulation backends, researchers can engineer entropic dynamics that enhance 
algorithmic performance. Whether through the resonance of weak signals (QSR), the 
thermalization of optimization landscapes (NAQA), or the intrinsic exploration of policy spaces 
(QRL), the "Noise-Aware" design philosophy transforms the quantum processor from a fragile 
calculator into a robust, stochastic decision engine. The path forward lies not just in silencing 
the noise, but in learning to speak its language. 
 
Data Appendix: Comparative Analysis of Noise Utilization 

 
Table 2: Comparison of Noise Utility in Classical vs. Quantum Decision Architectures 
 
Feature Classical Decision 

Making 
Quantum Decision 
Making 
(Noise-Enhanced) 

Advantage of 
Quantum Approach 

Exploration Source Pseudo-Random 
Number Generators 
(PRNG) 

Intrinsic Quantum 
Uncertainty + Device 
Noise 

True entropy; naturally 
scales with Hilbert 
space dimension. 

Exploration Cost Computational 
overhead to generate 
numbers. 

"Free" (thermodynamic 
byproduct). 

Reduced classical 
control overhead. 

Local Minima Escape Simulated Annealing 
(Metropolis-Hastings). 

Quantum Tunneling + 
Thermal Relaxation. 

Tunneling allows 
traversing high, thin 
barriers that thermal 
jumps cannot.11 

Signal Detection Threshold Stochastic 
Resonance (Classical). 

Quantum Stochastic 
Resonance (QSR). 

Exploits non-classical 
correlations and 
tunneling; higher 
sensitivity for specific 
weak signals.3 



Parameter Space Learning Rate, Epsilon, 
Temperature. 

Gate Angles 
($\theta$), Noise Prob 
($p$), Coherence Time 
($T_2$). 

Richer control space; 
physical parameters 
map directly to 
algorithmic dynamics. 

Implementation random.choice(), 
np.random.normal() 

NoiseModel, 
measure(), t1/t2 drift. 

Integration of 
hardware physics into 
software logic.47 

Citations referenced in analysis: 3 

Works cited 

1.​ Noisy intermediate-scale quantum computing - Wikipedia, accessed November 
22, 2025, 
https://en.wikipedia.org/wiki/Noisy_intermediate-scale_quantum_computing 

2.​ Quantum error correction (My Lab) | by cahyati sangaji (cahya) - Medium, 
accessed November 22, 2025, 
https://cahyati2d.medium.com/quantum-error-correction-my-lab-4843980d9269 

3.​ Quantum Algorithm for Signal Denoising | IEEE Journals & Magazine, accessed 
November 22, 2025, https://ieeexplore.ieee.org/document/10363387/ 

4.​ What Is Stochastic Resonance? Definitions, Misconceptions, Debates, and Its 
Relevance to Biology - PubMed Central, accessed November 22, 2025, 
https://pmc.ncbi.nlm.nih.gov/articles/PMC2660436/ 

5.​ Advances in Quantum Computation in NISQ Era - MDPI, accessed November 22, 
2025, https://www.mdpi.com/1099-4300/27/10/1074 

6.​ Certified random number generation using quantum computers - Frontiers, 
accessed November 22, 2025, 
https://www.frontiersin.org/journals/quantum-science-and-technology/articles/10
.3389/frqst.2025.1661544/full 

7.​ Improving Quantum Neural Networks exploration by Noise-Induced Equalization - 
arXiv, accessed November 22, 2025, https://arxiv.org/html/2511.09428v1 

8.​ (PDF) Noise-Resilient Quantum Reinforcement Learning - ResearchGate, 
accessed November 22, 2025, 
https://www.researchgate.net/publication/395033240_Noise-Resilient_Quantum_
Reinforcement_Learning 

9.​ Noise-Resilient Quantum Reinforcement Learning - arXiv, accessed November 22, 
2025, https://arxiv.org/html/2508.20601v1 

10.​Stochastic Resonance in an Underdamped System with Pinning Potential for Weak 
Signal Detection - MDPI, accessed November 22, 2025, 
https://www.mdpi.com/1424-8220/15/9/21169 

11.​Quantum Stochastic Resonance of Individual Fe Atoms, Susan Coppersmith - 
YouTube, accessed November 22, 2025, 
https://www.youtube.com/watch?v=yN-6bPr5jEM 

12.​Quantum stochastic resonance of individual Fe atoms - YouTube, accessed 
November 22, 2025, https://www.youtube.com/watch?v=jCf5BMuK7Q8 

https://en.wikipedia.org/wiki/Noisy_intermediate-scale_quantum_computing
https://cahyati2d.medium.com/quantum-error-correction-my-lab-4843980d9269
https://ieeexplore.ieee.org/document/10363387/
https://pmc.ncbi.nlm.nih.gov/articles/PMC2660436/
https://www.mdpi.com/1099-4300/27/10/1074
https://www.frontiersin.org/journals/quantum-science-and-technology/articles/10.3389/frqst.2025.1661544/full
https://www.frontiersin.org/journals/quantum-science-and-technology/articles/10.3389/frqst.2025.1661544/full
https://arxiv.org/html/2511.09428v1
https://www.researchgate.net/publication/395033240_Noise-Resilient_Quantum_Reinforcement_Learning
https://www.researchgate.net/publication/395033240_Noise-Resilient_Quantum_Reinforcement_Learning
https://arxiv.org/html/2508.20601v1
https://www.mdpi.com/1424-8220/15/9/21169
https://www.youtube.com/watch?v=yN-6bPr5jEM
https://www.youtube.com/watch?v=jCf5BMuK7Q8


13.​[1109.4147] Stochastic resonance in Gaussian quantum channels - arXiv, accessed 
November 22, 2025, https://arxiv.org/abs/1109.4147 

14.​Quantum stochastic resonance in a single-photon emitter - arXiv, accessed 
November 22, 2025, https://arxiv.org/pdf/2505.14221 

15.​Stochastic resonance in Schmitt trigger and its application towards weak signal 
detection - arXiv, accessed November 22, 2025, https://arxiv.org/pdf/2501.10405 

16.​In Quantum Sensing, What Beats Beating Noise? Meeting Noise Halfway. | NIST, 
accessed November 22, 2025, 
https://www.nist.gov/news-events/news/2025/09/quantum-sensing-what-beats-
beating-noise-meeting-noise-halfway 

17.​What is the role of exploration noise in reinforcement learning? - Milvus, accessed 
November 22, 2025, 
https://milvus.io/ai-quick-reference/what-is-the-role-of-exploration-noise-in-rein
forcement-learning 

18.​Guarantees for Epsilon-Greedy Reinforcement Learning with Function 
Approximation, accessed November 22, 2025, 
https://research.google/pubs/guarantees-for-epsilon-greedy-reinforcement-lear
ning-with-function-approximation/ 

19.​[2511.09428] Improving Quantum Neural Networks exploration by Noise-Induced 
Equalization - arXiv, accessed November 22, 2025, 
https://arxiv.org/abs/2511.09428 

20.​AerSimulator - Qiskit Aer 0.17.1 - GitHub Pages, accessed November 22, 2025, 
https://qiskit.github.io/qiskit-aer/stubs/qiskit_aer.AerSimulator.html 

21.​How to change the noise properties of a qiskit noise model? - Stack Overflow, 
accessed November 22, 2025, 
https://stackoverflow.com/questions/79359049/how-to-change-the-noise-prope
rties-of-a-qiskit-noise-model 

22.​Characterizing the Reproducibility of Noisy Quantum Circuits - MDPI, accessed 
November 22, 2025, https://www.mdpi.com/1099-4300/24/2/244 

23.​Parametrized Quantum Circuits for Reinforcement Learning ..., accessed 
November 22, 2025, 
https://www.tensorflow.org/quantum/tutorials/quantum_reinforcement_learning 

24.​On Quantum Natural Policy Gradients - IEEE Xplore, accessed November 22, 
2025, https://ieeexplore.ieee.org/iel8/8924785/10379182/10569042.pdf 

25.​Quantum noise modeling through Reinforcement Learning - arXiv, accessed 
November 22, 2025, https://arxiv.org/html/2408.01506v1 

26.​[2507.21883] Sampling (noisy) quantum circuits through randomized rounding - 
arXiv, accessed November 22, 2025, https://arxiv.org/abs/2507.21883 

27.​Quantum Natural Policy Gradients: Towards Sample-Efficient Reinforcement 
Learning - GitHub, accessed November 22, 2025, 
https://github.com/nicomeyer96/quantum-natural-policy-gradients 

28.​An Overview of Noise-Adaptive Quantum Algorithms, accessed November 22, 
2025, 
https://thequantuminsider.com/2025/06/14/an-overview-of-noise-adaptive-quant
um-algorithms/ 

https://arxiv.org/abs/1109.4147
https://arxiv.org/pdf/2505.14221
https://arxiv.org/pdf/2501.10405
https://www.nist.gov/news-events/news/2025/09/quantum-sensing-what-beats-beating-noise-meeting-noise-halfway
https://www.nist.gov/news-events/news/2025/09/quantum-sensing-what-beats-beating-noise-meeting-noise-halfway
https://milvus.io/ai-quick-reference/what-is-the-role-of-exploration-noise-in-reinforcement-learning
https://milvus.io/ai-quick-reference/what-is-the-role-of-exploration-noise-in-reinforcement-learning
https://research.google/pubs/guarantees-for-epsilon-greedy-reinforcement-learning-with-function-approximation/
https://research.google/pubs/guarantees-for-epsilon-greedy-reinforcement-learning-with-function-approximation/
https://arxiv.org/abs/2511.09428
https://qiskit.github.io/qiskit-aer/stubs/qiskit_aer.AerSimulator.html
https://stackoverflow.com/questions/79359049/how-to-change-the-noise-properties-of-a-qiskit-noise-model
https://stackoverflow.com/questions/79359049/how-to-change-the-noise-properties-of-a-qiskit-noise-model
https://www.mdpi.com/1099-4300/24/2/244
https://www.tensorflow.org/quantum/tutorials/quantum_reinforcement_learning
https://ieeexplore.ieee.org/iel8/8924785/10379182/10569042.pdf
https://arxiv.org/html/2408.01506v1
https://arxiv.org/abs/2507.21883
https://github.com/nicomeyer96/quantum-natural-policy-gradients
https://thequantuminsider.com/2025/06/14/an-overview-of-noise-adaptive-quantum-algorithms/
https://thequantuminsider.com/2025/06/14/an-overview-of-noise-adaptive-quantum-algorithms/


29.​Noise can be helpful for variational quantum algorithms - ResearchGate, 
accessed November 22, 2025, 
https://www.researchgate.net/publication/364525383_Noise_can_be_helpful_for_
variational_quantum_algorithms 

30.​Improving Quantum Approximate Optimization by Noise-Directed Adaptive 
Remapping, accessed November 22, 2025, https://arxiv.org/html/2404.01412v1 

31.​Stochastic noise can be helpful for variational quantum algorithms - arXiv, 
accessed November 22, 2025, https://arxiv.org/html/2210.06723v3 

32.​Why and When Pausing is Beneficial in Quantum Annealing - SciSpace, accessed 
November 22, 2025, 
https://scispace.com/pdf/why-and-when-pausing-is-beneficial-in-quantum-anne
aling-1unri4cjlh.pdf 

33.​DIY Quantum Random Number Generator (QRNG) with IBM Qiskit – Feedback & 
Discussion: Am I all over the place? : r/QuantumComputing - Reddit, accessed 
November 22, 2025, 
https://www.reddit.com/r/QuantumComputing/comments/1j58mio/diy_quantum_r
andom_number_generator_qrng_with_ibm/ 

34.​Warning T2 > 2 * T1 in simulation with device noise model rather than failing · Issue 
#1464, accessed November 22, 2025, 
https://github.com/Qiskit/qiskit-aer/issues/1464 

35.​Johns Hopkins Team Breaks Through Quantum Noise, accessed November 22, 
2025, 
https://www.jhuapl.edu/news/news-releases/251120-quantum-noise-framework 

36.​Johns Hopkins Team Introduces New Method for Mapping Quantum Noise, 
accessed November 22, 2025, 
https://thequantuminsider.com/2025/11/21/johns-hopkins-maps-quantum-noise/ 

37.​Certified Random Number Generation using Quantum Computers - arXiv, 
accessed November 22, 2025, https://arxiv.org/html/2502.02973v1 

38.​Using Noise Model of a real hardware on qiskit simulators, accessed November 
22, 2025, 
https://quantumcomputing.stackexchange.com/questions/37314/using-noise-mo
del-of-a-real-hardware-on-qiskit-simulators 

39.​Exact and noisy simulation with Qiskit Aer primitives | IBM Quantum 
Documentation, accessed November 22, 2025, 
https://quantum.cloud.ibm.com/docs/guides/simulate-with-qiskit-aer 

40.​How to obtain the noise of a circuit in Qiskit? - Quantum Computing Stack 
Exchange, accessed November 22, 2025, 
https://quantumcomputing.stackexchange.com/questions/9677/how-to-obtain-th
e-noise-of-a-circuit-in-qiskit 

41.​Accelerate Quantum Computing Noise Simulation With DASK Clusters | by Qiskit 
- Medium, accessed November 22, 2025, 
https://medium.com/qiskit/accelerate-quantum-computing-noise-simulation-with
-dask-clusters-26aa409c32d0 

42.​Utility-scale dynamic circuits now available for all users | IBM Quantum 
Computing Blog, accessed November 22, 2025, 

https://www.researchgate.net/publication/364525383_Noise_can_be_helpful_for_variational_quantum_algorithms
https://www.researchgate.net/publication/364525383_Noise_can_be_helpful_for_variational_quantum_algorithms
https://arxiv.org/html/2404.01412v1
https://arxiv.org/html/2210.06723v3
https://scispace.com/pdf/why-and-when-pausing-is-beneficial-in-quantum-annealing-1unri4cjlh.pdf
https://scispace.com/pdf/why-and-when-pausing-is-beneficial-in-quantum-annealing-1unri4cjlh.pdf
https://www.reddit.com/r/QuantumComputing/comments/1j58mio/diy_quantum_random_number_generator_qrng_with_ibm/
https://www.reddit.com/r/QuantumComputing/comments/1j58mio/diy_quantum_random_number_generator_qrng_with_ibm/
https://github.com/Qiskit/qiskit-aer/issues/1464
https://www.jhuapl.edu/news/news-releases/251120-quantum-noise-framework
https://thequantuminsider.com/2025/11/21/johns-hopkins-maps-quantum-noise/
https://arxiv.org/html/2502.02973v1
https://quantumcomputing.stackexchange.com/questions/37314/using-noise-model-of-a-real-hardware-on-qiskit-simulators
https://quantumcomputing.stackexchange.com/questions/37314/using-noise-model-of-a-real-hardware-on-qiskit-simulators
https://quantum.cloud.ibm.com/docs/guides/simulate-with-qiskit-aer
https://quantumcomputing.stackexchange.com/questions/9677/how-to-obtain-the-noise-of-a-circuit-in-qiskit
https://quantumcomputing.stackexchange.com/questions/9677/how-to-obtain-the-noise-of-a-circuit-in-qiskit
https://medium.com/qiskit/accelerate-quantum-computing-noise-simulation-with-dask-clusters-26aa409c32d0
https://medium.com/qiskit/accelerate-quantum-computing-noise-simulation-with-dask-clusters-26aa409c32d0


https://www.ibm.com/quantum/blog/utility-scale-dynamic-circuits 
43.​[2407.18829] Using stochastic resonance of two-level systems to increase qubit 

decoherence times - arXiv, accessed November 22, 2025, 
https://arxiv.org/abs/2407.18829 

44.​Is Noise model for quantum prototypes accurate in Qiskit, accessed November 
22, 2025, 
https://quantumcomputing.stackexchange.com/questions/15017/is-noise-model-
for-quantum-prototypes-accurate-in-qiskit 

45.​Connecting Quantum Computing with Classical Stochastic Simulation - arXiv, 
accessed November 22, 2025, https://arxiv.org/html/2509.18614v1 

46.​Quantum circuit of the adaptive threshold-based quantum image... | Download 
Scientific Diagram - ResearchGate, accessed November 22, 2025, 
https://www.researchgate.net/figure/Quantum-circuit-of-the-adaptive-threshold
-based-quantum-image-segmentation-x-denotes-the_fig10_364611570 

47.​Building noise models | IBM Quantum Documentation, accessed November 22, 
2025, https://quantum.cloud.ibm.com/docs/guides/build-noise-models 

48.​Applying noise to custom unitary gates - Qiskit Aer 0.17.1 - GitHub Pages, 
accessed November 22, 2025, 
https://qiskit.github.io/qiskit-aer/tutorials/4_custom_gate_noise.html 

49.​Quantum annealing - Wikipedia, accessed November 22, 2025, 
https://en.wikipedia.org/wiki/Quantum_annealing 

50.​[2401.16631] Noise-induced phase transitions in hybrid quantum circuits - arXiv, 
accessed November 22, 2025, https://arxiv.org/abs/2401.16631 

https://www.ibm.com/quantum/blog/utility-scale-dynamic-circuits
https://arxiv.org/abs/2407.18829
https://quantumcomputing.stackexchange.com/questions/15017/is-noise-model-for-quantum-prototypes-accurate-in-qiskit
https://quantumcomputing.stackexchange.com/questions/15017/is-noise-model-for-quantum-prototypes-accurate-in-qiskit
https://arxiv.org/html/2509.18614v1
https://www.researchgate.net/figure/Quantum-circuit-of-the-adaptive-threshold-based-quantum-image-segmentation-x-denotes-the_fig10_364611570
https://www.researchgate.net/figure/Quantum-circuit-of-the-adaptive-threshold-based-quantum-image-segmentation-x-denotes-the_fig10_364611570
https://quantum.cloud.ibm.com/docs/guides/build-noise-models
https://qiskit.github.io/qiskit-aer/tutorials/4_custom_gate_noise.html
https://en.wikipedia.org/wiki/Quantum_annealing
https://arxiv.org/abs/2401.16631

	Entropic Dynamics and Stochastic Resources: A Comprehensive Framework for Noise-Enhanced Quantum Decision-Making Algorithms in the NISQ Era 
	1. Introduction: The Paradox of Noise in Quantum Computation 
	1.1 The NISQ Landscape: Constraints as Features 
	1.2 Theoretical Foundations: Open Systems and Non-Markovian Dynamics 

	2. Quantum Stochastic Resonance (QSR): Physics and Implementation 
	2.1 The Phenomenon of Stochastic Resonance 
	2.2 The "Forbidden Interval" and Threshold Mechanics 
	2.3 Algorithmic Implementation in Qiskit 
	2.3.1 The Parametric Noise Circuit 
	2.3.2 Constructing the Noise Model 

	2.4 Signal Denoising via Amplitude Amplification 
	2.5 Practical Application: The Quantum Threshold Detector 

	3. Entropic Exploration in Reinforcement Learning (RL) 
	3.1 The Exploration-Exploitation Dilemma 
	3.2 Quantum Noise as Intrinsic Exploration 
	3.3 The Physics of "Bound States" in Agent-Noise Systems 
	3.4 Implementation: The Noise-Annealed Q-Policy 
	3.4.1 Dynamic Noise Scheduling 

	3.5 Softmax Action Selection and Temperature Scaling 

	4. Noise-Assisted Optimization in Variational Algorithms 
	4.1 The Landscape of VQA: Barren Plateaus and Local Minima 
	4.2 Noise-Induced Equalization (NIE) 
	4.3 Noise-Directed Adaptive Remapping (NDAR) 
	4.4 Stochastic Tunneling and Escaping Saddle Points 

	5. Quantum Annealing: The Role of Thermalization and Pausing 
	5.1 Thermal Fluctuations as a Resource 
	5.2 Simulating Annealing Dynamics in Qiskit 

	6. Characterizing the Resource: Noise Learning and Spectroscopy 
	6.1 Reinforcement Learning for Noise Characterization 
	6.2 Root Space Decomposition and Spatial Correlations 

	7. Technical Implementation Framework in Qiskit 
	7.1 Advanced NoiseModel Construction 
	7.2 Simulating Large-Scale Noisy Systems with Dask 
	7.3 Dynamic Circuits and Feedforward 

	8. Challenges and Strategic Considerations 
	8.1 The "Goldilocks" Zone and Instability 
	8.2 Non-Markovian Memory Effects 
	8.3 Simulation vs. Reality Gap 

	9. Case Studies and Future Outlook 
	9.1 Case Study: Financial Risk Analysis 
	9.2 Case Study: Quantum Image Segmentation 
	9.3 Future Outlook: Synthetic Noise in Fault-Tolerant Era 

	10. Conclusion 
	Data Appendix: Comparative Analysis of Noise Utilization 
	Works cited 




