Entropic Dynamics and Stochastic
Resources: A Comprehensive
Framework for Noise-Enhanced
Quantum Decision-Making Algorithms in
the NISQ Era

1. Introduction: The Paradox of Noise in Quantum
Computation

The prevailing narrative in the development of quantum computing technologies has been
defined by a singular, adversarial relationship with noise. In the context of the Noisy
Intermediate-Scale Quantum (NISQ) era, the fragility of quantum states—manifested through
decoherence, gate infidelity, crosstalk, and readout errors—is predominantly viewed as the
primary barrier to achieving computational advantage or "quantum supremacy".! The
orthodox engineering objective is the rigorous suppression of these errors, employing
increasingly sophisticated techniques such as Zero-Noise Extrapolation (ZNE), Probabilistic
Error Cancellation (PEC), and ultimately, the implementation of fault-tolerant Quantum Error
Correction (QEC) codes.' These methods, while essential for cryptographic and algebraic
algorithms like Shor’s or Grover’s, treat environmental interaction as a purely destructive force
that erodes information and collapses the delicate superposition required for computation.
However, a parallel and theoretically rich paradigm is emerging at the intersection of open
guantum systems theory, non-equilibrium thermodynamics, and machine learning. This
paradigm challenges the binary categorization of noise as strictly detrimental. It posits that in
specific computational domains—particularly those involving probabilistic decision-making,
optimization in non-convex landscapes, and the detection of weak signals—noise acts not
merely as an entropic sink, but as a computational resource.? This perspective is grounded in
the observation that biological and physical systems often exploit thermal fluctuations to drive
state transitions, enhance sensitivity, and explore solution spaces efficiently.

This report presents an exhaustive analysis of the methodology for harnessing quantum noise
in decision-making algorithms, specifically leveraging the Qiskit software development kit
(SDK). We explore the theoretical mechanisms of Quantum Stochastic Resonance (QSR),
Entropic Exploration in Reinforcement Learning (RL), and Noise-Assisted Variational



Optimization, demonstrating how the inherent imperfections of NISQ devices can be
mathematically mapped to functional algorithmic hyperparameters. By shifting the design
philosophy from “Noise-Mitigation" to "Noise-Awareness" and "Noise-Exploitation," we
outline a framework where the quantum processor functions as a tunable stochastic engine,
capable of solving complex decision problems by virtue of its coupling to the environment.

1.1 The NISQ Landscape: Constraints as Features

The current generation of quantum hardware is defined by its limitations. Processors ranging
from 50 to over 1,000 qubits are now available, yet they lack the fidelity required for deep,
error-corrected circuits.! The fidelity of two-qubit gates often lingers below the thresholds
necessary for surface codes, and coherence times ($T_1$ and $T _2$) restrict circuit depth.®
In traditional algorithms, these constraints dictate a hard ceiling on performance. However, for
decision-making algorithms, which are inherently probabilistic, the NISQ regime offers a
unique advantage. Decision-making under uncertainty often requires the generation of
entropy to explore alternative hypotheses or actions. Classical computers must expend
computational resources to generate pseudo-random numbers to simulate this uncertainty. In
contrast, a NISQ device generates true, physical entropy "for free" via its coupling to the
thermal bath.® The challenge, and the focus of this report, lies in characterizing this entropy
and shaping it—using control pulses and circuit design—to drive the system toward optimal
decision manifolds rather than maximally mixed states.’

1.2 Theoretical Foundations: Open Systems and Non-Markovian
Dynamics

The theoretical basis for beneficial noise is found in the transition from closed-system
dynamics (Unitary evolution) to open-system dynamics. While a closed system preserves
information perfectly, it cannot easily "forget" suboptimal information, often requiring complex
interference patterns to amplify correct answers. Decision making, by definition, is a
dissipative process; it involves the convergence from a set of many possibilities to a single
choice.

The evolution of such a system is described by the Lindblad Master Equation, which accounts
for the unitary dynamics driven by the system Hamiltonian $H$ and the dissipative dynamics
driven by the interaction with the environment:

$$ \frac{d\rho}{dt} = -i[H, \rho] + \sum_k \gamma_k \left( L_k \rho L_k™\dagger - \frac{1{2}
{L_k™Mdagger L_k, \rho} \right) $3$

Here, $\rho$ represents the density matrix of the decision engine, $H$ represents the logic of
the decision problem (encoded in gates), and $L_k$ represents the noise channels (e.g.,
amplitude damping, dephasing) with rates $\gamma_k$.2

Crucially, recent research indicates that non-Markovian effects—where the environment



retains a "memory" of the system's past states—can lead to the formation of bound states in
the agent-noise spectrum. These bound states can protect specific coherences or drive the
system into preferred subspaces that correspond to optimal decision strategies, effectively
creating "noise-resilient" subspaces.® This suggests that by tuning the coupling strength (via
gate timing and pulse control in Qiskit), one can manipulate the steady state of the system to
align with the solution to a decision problem.

2. Quantum Stochastic Resonance (QSR): Physics and
Implementation

2.1 The Phenomenon of Stochastic Resonance

Stochastic Resonance (SR) is a counter-intuitive non-linear phenomenon wherein the addition
of noise to a system improves the detection of weak signals. First identified in the context of
ice ages and later in biological sensory neurons, SR occurs when a weak periodic signal is
insufficient to drive a system over a potential barrier. When random noise is added, it provides
the supplemental energy required for the system to hop over the barrier. Crucially, this barrier
crossing becomes synchronized with the weak input signal at an optimal noise intensity,
maximizing the Signal-to-Noise Ratio (SNR) of the output.”

In the quantum regime, this phenomenon is enriched by the presence of quantum tunneling.
Quantum Stochastic Resonance (QSR) describes a scenario where a quantum system (e.g., a
qubit or a spin) is subjected to a weak driving force and a noise bath. Even if the thermal
energy is insufficient for classical activation, and the driving force is too weak for deterministic
transition, the interplay between tunneling oscillations and noise-induced decoherence can
lead to a resonant amplification of the signal."”

2.2 The "Forbidden Interval” and Threshold Mechanics

For decision-making applications, QSR is particularly relevant in threshold detection
tasks—determining if a signal exists when it is below the sensitivity floor of the sensor.
Theoretical models of lossy bosonic channels indicate that SR effects occur specifically when
the detection threshold lies outside a "forbidden interval" determined by the system's
parameters.™

In a qubit-based decision model, the "barrier" is the measurement collapse in the
computational basis ($Z$-basis). A weak decision signal might be encoded as a small rotation
angle $\theta$ away from the ground state $|0\rangle$. In a noiseless, finite-sampling regime,
this small rotation might never result in a $|1\rangle$ measurement, leading to a false negative



(failure to detect). However, the introduction of a relaxation channel (noise) can bias the
probability distribution. If the relaxation rate is tuned to the periodicity or amplitude of the
signal encoding, the probability of measuring $|1\rangle$ can be enhanced specifically when
the signal is present, effectively lowering the detection threshold via noise assistance.®

2.3 Algorithmic Implementation in Qiskit

To operationalize QSR for decision making, we model the qubit as a noisy detector. The
objective is to find the optimal noise parameters that maximize the mutual information
between the input hypothesis (signal) and the measurement outcome (decision).

2.3.1 The Parametric Noise Circuit

The implementation utilizes qgiskit and qiskit_aer to simulate a tunable environment. The
workflow requires moving beyond standard "device noise models" derived from backend
properties and instead constructing a parameterized noise model where the noise strength is
a control variable.

Circuit Structure:

1. Initialization: Prepare the qubit in the ground state $|O\rangle$.

2. Signal Encoding: Apply the weak decision signal as a rotation $R_y(\epsilon)$, where
$\epsilon$ represents the magnitude of the external stimulus (e.g., a market signal, a
sensor reading).

3. Noise Injection: Apply a specific noise channel. For QSR, bit-flip errors or thermal
relaxation errors are most effective. In Qiskit, this is achieved using
giskit_aer.noise.thermal_relaxation_error or pauli_error.

4. Measurement: Measure in the $Z$-basis.

5. Iterative Tuning: Vary the noise parameter (e.g., the probability $p$ of the Pauli error
or the $T_1$ time) to find the resonance peak.

Table 1: QSR Circuit Components and Qiskit Implementation

Component Physical Role Qiskit Implementation

Weak Signal Input Stimulus QuantumCircuit.ry(theta,
qubit) where $\theta \Il \pi/2$

Potential Barrier Decision Threshold QuantumCircuit.measure(qubit

chit)

Noise Source Stochastic Driver NoiseModel.add_all_qubit_qua
ntum_error(error, ['id’, 'ry'])

Resonance Tuning Control Parameter Sweeping $T 1% in
thermal_relaxation_error(t1, t2,
time)

Decision Output Response Variable result.get_counts()




$\rightarrow$ Signal-to-Noise
Ratio (SNR)

2.3.2 Constructing the Noise Model

The qiskit_aer.noise module allows for the granular construction of these errors. A critical
aspect is ensuring the noise is applied during the gate operation or the idle time, mimicking
the continuous interaction with a bath.

Python

# Conceptual representation of Noise Model Construction for QSR
from giskit_aer.noise import NoiseModel, thermal_relaxation_error, depolarizing_error

def build_resonant_noise_model(t1_param, t2_param, gate_time):

Constructs a noise model with specific thermal relaxation parameters
to test for stochastic resonance conditions.

noise_model = NoiseModel()

# Create the error object

# T1: Relaxation time (energy loss)

# T2: Dephasing time (coherence loss)

error_thermal = thermal_relaxation_error(t1_param, t2_param, gate_time)

# Apply to relevant gates (e.g., Identity and Rotation)
# The noise acts "during” the gate execution
noise_model.add_all_qubit_quantum_error(error_thermal, ["id", "rz", "sx", "ry"])

return noise_model
By running the weak signal circuit across a spectrum of t1_param values, the decision maker
will observe a non-monotonic response curve: the detection probability (or SNR) will rise to a

maximum at a specific noise level before falling off as decoherence overwhelms the system.’
This peak is the QSR operating point.

2.4 Signal Denoising via Amplitude Amplification



Beyond simple detection, QSR principles can be applied to signal denoising. Recent literature
proposes a quantum algorithm for signal denoising that performs thresholding in the
frequency domain. This method utilizes amplitude amplification (Grover-like iterations)
combined with an adaptive threshold determined by local mean values. Interestingly,
numerical results indicate that this algorithm is not only robust to noise but can outperform
existing quantum algorithms specifically in the presence of quantum noise.® The noise
effectively smooths the thresholding function, preventing the "hard" cutoff artifacts often
seen in classical signal processing, and allowing for a more organic separation of signal from
background.

2.5 Practical Application: The Quantum Threshold Detector

In a practical decision-making scenario—such as high-frequency trading or anomaly
detection in cybersecurity—the "Quantum Threshold Detector" operates as follows:
1. Incoming data streams are normalized and mapped to rotation angles $\epsilon_i$.
2. The quantum processor is calibrated to its "Resonance Point" ($p_{opt}$) using a known
pilot signal.
3. The data stream is processed through the noisy circuit.
4. The measurement output bitstring density is monitored. A spike in $|1\rangle$ counts
indicates a signal crossing the threshold, assisted by the noise floor.™
This approach leverages the inherent sensitivity of the qubit to environmental coupling,
transforming the "bug" of sensitivity into the "feature" of a highly responsive sensor."

3. Entropic Exploration in Reinforcement Learning (RL)

3.1 The Exploration-Exploitation Dilemma

Reinforcement Learning (RL) is the primary computational framework for sequential decision
making. An RL agent learns to maximize cumulative reward by interacting with an environment.
A central challenge in RL is the Exploration-Exploitation Dilemma: the agent must balance
choosing the action it currently believes is best (exploitation) with trying new actions to
discover potentially superior strategies (exploration).

Classical RL algorithms address this using pseudo-random heuristics. The $\epsilon$-greedy
method selects a random action with probability $\epsilon$. Boltzmann exploration selects
actions based on a softmax distribution of their estimated values, modulated by a
"temperature" parameter $\tau$. While effective, these methods are computationally artificial;
the randomness is injected via a Pseudo-Random Number Generator (PRNG) and does not



reflect any intrinsic property of the agent's knowledge or the environment."”

3.2 Quantum Noise as Intrinsic Exploration

Quantum Reinforcement Learning (QRL) introduces a paradigm shift by utilizing the intrinsic
probabilistic nature of quantum measurement for exploration. A Variational Quantum Circuit
(VQC) acting as a policy network ($\pi_\theta(s)$) outputs a quantum state
$\psi(\theta)\rangle$. The probability of selecting action $a$ is given by Born's rule: $P(a) =
Nangle a | \psi(\theta) \rangle|*2$.

In a noiseless quantum system, the agent might converge to a deterministic policy (a pure
state corresponding to a single basis vector) too quickly, leading to suboptimal local minima.
However, on NISQ hardware, the state is a mixed state density matrix $\rho$. For a
depolarizing noise channel with probability $p$, the state can be approximated as:

$$\rho_{noisy} = (1-p)\rho_{ideal} + p \frac{I{d}$$
where $1/d$ represents the maximally mixed state (uniform distribution).
This equation reveals a profound connection: Quantum noise ($p$) is physically
isomorphic to the exploration rate ($\epsilon$) in classical RL.
e When $p$ is high (high noise), the policy approaches a uniform distribution, forcing the
agent to explore the action space randomly.
e When $p$ is low (low noise), the policy is dominated by $\rho_{ideal}$, allowing the
agent to exploit its learned parameters."

3.3 The Physics of "Bound States" in Agent-Noise Systems

The interaction between the agent (quantum circuit) and the noise is not merely a blurring of
probabilities. Advanced theoretical treatments using non-Markovian dynamics have identified
"bound states" in the energy spectrum of the total agent-noise system.®

In the context of a quantum eigensolver agent, the decoherence effect—typically modeled
under the Born-Markov approximation as strictly destructive—can be suppressed. When the
interaction time between the agent and the environment is tuned correctly, the system forms
a bound state that prevents the complete dissipation of information. This effectively "restores"
the QRL performance to that of the noiseless case, but with the added benefit of the initial
noise-induced exploration. This suggests a mechanism for Noise-Resilient QRL, where the
agent utilizes the noise for early-stage exploration but naturally settles into a protected
subspace for late-stage exploitation.?

3.4 Implementation: The Noise-Annealed Q-Policy



To implement this in Qiskit, we design a training curriculum that treats the backend noise
model as a dynamic hyperparameter, analogous to the “"cooling schedule" in simulated
annealing.

3.4.1 Dynamic Noise Scheduling

Instead of using a fixed backend, the training loop utilizes AerSimulator with a variable
NoiseModel.
Algorithm 1: Noise-Annealed Quantum Policy Gradient
1. Initialization:
o Initialize PQC parameters $\theta$.
o Set initial noise level $p_{start}$ (e.g., 0.1) and decay rate $\lambda$ (e.g., 0.99).
o Define the target noise floor $p_{min}$ (representing the intrinsic hardware error
floor).
2. Training Loop (Epoch $t$):
o Update Noise Model:

$$p_t =\max(p_{min}, p_{start} \times \lambda"t)$$

Construct NoiseModel with depolarizing_error(p_t, num_qubits).

Note: Updating the noise model in Qiskit requires re-instantiating the NoiseModel

object and passing it to backend.set_options.20

Execute Policy: Run the PQC on the simulator with the current NoiseModel.

Action Selection:

m  Method A (Direct Sampling): Measure the circuit. The bitstring outcome is
the action. The high noise $p_t$ ensures diversity in these samples.??

m  Method B (Softmax Expectation): Measure expectation values $\langle Z i
\rangle$. Compute action probabilities via Softmax. High noise dampens
$\langle Z_i\rangle \to 0$, which flattens the Softmax distribution
(effectively increasing temperature).?®

Reward Collection: Execute action, observe reward $r _t$.

Parameter Update: Update $\theta$ using Policy Gradient (e.g., REINFORCE or

PPO) based on the noisy rewards.

3. Result: The agent begins with "high temperature" exploration driven by the simulated
noise. As training proceeds, the noise "cools," and the agent's policy crystallizes around
the optimal strategy. This removes the need for coding explicit $\epsilon$-greedy logic;
the physics of the simulation handles the exploration-exploitation trade-off."

O

3.5 Softmax Action Selection and Temperature Scaling



A rigorous mapping exists between quantum observables and the Boltzmann distribution used
in RL. In a Softmax-VQC policy, the probability of action $a$ is defined as:

$3 \pi_\theta(als) = \frac{e”{\beta \langle O_a \rangle_{s, \theta}}H{\sum_{a'} e*{\beta \langle

O {a'}\rangle {s, \theta}}} $$

where $\langle O_a \rangle$ is the expectation value of an observable associated with action
$a$ (e.g., Pauli-Z on specific qubits), and $\beta$ is the inverse temperature.

Under a depolarizing channel $\mathcal{E} p$, the expectation value of any traceless
observable (like Pauli-Z) is scaled by a factor $(1-p)*D$, where $D$ is the circuit depth.?

$3$\langle O_a \rangle_{noisy} = (1-p)"D \langle O_a \rangle_{ideal}$$
Substituting this into the Softmax equation:

$3$\pi_{noisy}(als) \propto e*{\beta (1-p)*D \langle O_a \rangle_{ideal}}$$
The term $\beta_{eff} = \beta (1-p)"D$ acts as an effective inverse temperature.
e High noise ($p \to 1$) $\implies \beta_{eff} \to O \implies$ Uniform distribution (High
Exploration).
e Low noise ($p \to 0$) $\implies \beta_{eff} \to \beta \implies$ Peaked distribution
(Exploitation).
This derivation proves that quantum noise naturally implements temperature scaling. By
simply running the circuit on a noisier backend (or modifying the simulator noise), one
automatically increases the exploration entropy of the agent without changing the classical
post-processing code.?

4. Noise-Assisted Optimization in Variational
Algorithms

4.1 The Landscape of VQA: Barren Plateaus and Local Minima

Variational Quantum Algorithms (VQAs), such as the Variational Quantum Eigensolver (VQE)
and the Quantum Approximate Optimization Algorithm (QAOA), essentially function as
decision-making loops. The classical optimizer decides how to update the circuit parameters
$\theta$ to minimize a cost function $C(\theta)$.
Two primary pathologies plague these landscapes:
1. Barren Plateaus: Regions where the gradient vanishes exponentially with system size,
making optimization impossible.”
2. Local Minima: Non-convex landscapes where the optimizer gets trapped in suboptimal
basins.



While noise is generally a cause of barren plateaus (noise-induced barren plateaus), emerging
research suggests a "sweet spot" where noise can actually aid optimization.’

4.2 Noise-Induced Equalization (NIE)

The concept of Noise-Induced Equalization (NIE) posits that a controlled level of noise can
reshape the optimization landscape in a beneficial way. While heavy noise flattens the
landscape entirely (destroying information), a modest noise level $p**$ increases the
relevance of less influential parameters relative to the noiseless case. This makes the
curvature of the landscape more uniform across different directions, effectively
preconditioning the optimization problem.’

In the vicinity of this optimal noise level $p”**$, the reshaping of the landscape favors
parameter space exploration over exploitation. The noise smoothes out high-frequency
"roughness"” (shallow local minima) while preserving the global structure of the cost function.
This allows the optimizer to traverse the landscape more broadly, avoiding premature
convergence to poor local optima.?’

4.3 Noise-Directed Adaptive Remapping (NDAR)

For combinatorial optimization problems (like Max-Cut solved via QAOA), the Noise-Directed
Adaptive Remapping (NDAR) technique explicitly leverages noise information. In this
framework, the algorithm uses the noisy output distribution to identify "attractor
states"—solutions that appear frequently despite (or because of) the noise.?®

Rather than fighting the noise, NDAR assumes that the noise might preferentially relax the
system into low-energy states (analogous to thermal relaxation). The algorithm iteratively
fixes variables (decimates the problem) based on the consensus of the noisy samples. This is
a "greedy" approach guided by the noisy quantum distribution. Research indicates that for
certain problem classes, NAQAs (Noise-Adaptive Quantum Algorithms) like NDAR significantly
outperform "vanilla® QAOA in noisy environments, effectively utilizing the noise to identify
stable variable assignments.?®

4.4 Stochastic Tunneling and Escaping Saddle Points

The mechanism of escaping local minima via noise is analogous to Stochastic Tunneling. In
classical optimization, Stochastic Gradient Descent (SGD) relies on the noise inherent in
mini-batch sampling to jump out of local basins. In VQAs, the intrinsic shot noise (finite
sampling) and gate noise provide this "kick."

Experiments on IBM Quantum hardware have demonstrated that optimizations run with
perfect gradients (simulated) often get stuck in saddle points, whereas optimizations run with



noisy gradients (from real hardware or noisy simulators) successfully escape these points and
converge to the true minimum.®' The noise provides the necessary "thermal energy" to
surmount the energy barriers surrounding the saddle point.

5. Quantum Annealing: The Role of Thermalization and
Pausing

While the primary focus of this report is gate-based Qiskit implementation, the principles of
beneficial noise are most mature in the field of Quantum Annealing (QA). Understanding QA
mechanisms provides valuable insights for gate-based QAOA implementations.

5.1 Thermal Fluctuations as a Resource

Quantum Annealing relies on the Adiabatic Theorem, which states that a system remains in its
ground state if the Hamiltonian changes slowly enough. However, at non-zero temperature,
the system is subject to thermal excitations.

Historically, thermalization was seen as an error source. However, recent studies on "Pausing"
in quantum annealing have shown that stopping the anneal (holding the Hamiltonian constant)
for a duration can improve success probabilities. This counter-intuitive result is explained by
beneficial non-equilibrium coupling. If the system is in an excited state (an error), pausing
allows the system to thermally relax down to the ground state, provided the background
temperature is low enough relative to the energy gap.*

5.2 Simulating Annealing Dynamics in Qiskit

While Qiskit is gate-based, one can simulate annealing-inspired protocols using QAOA or
discretized adiabatic evolution (Trotterization). To exploit the "thermal relaxation" benefit
observed in annealers, one can introduce Delay Instructions into the Qiskit circuit.
Implementation Strategy:
1. Trotterized Evolution: Implement the adiabatic path $H(t) = (1-s)H_X + sH_Z$ using
alternating layers of rotation gates.
2. Mid-Circuit Pausing: Insert QuantumCircuit.delay(duration, unit='dt') instructions
between Trotter steps.
3. Noise Model: Apply a thermal_relaxation_error to the delay instructions.
By tuning the duration of the delay, one allows the qubits to interact with the thermal bath. If
the qubit state is currently "hotter" (higher energy) than the bath, the delay allows it to
dissipate energy (relax toward $|0\rangle$), potentially correcting errors that occurred during
the unitary evolution steps.® This mimics the "pause" benefit in gate-based hardware.



6. Characterizing the Resource: Noise Learning and
Spectroscopy

To effectively exploit noise, one must first characterize it with high precision. Treating noise as
a generic "depolarizing channel" is insufficient for advanced noise-assisted algorithms. We
must distinguish between coherent errors, incoherent noise, and spatial correlations.

6.1 Reinforcement Learning for Noise Characterization

Standard noise characterization techniques like Randomized Benchmarking (RB) or
Tomography are resource-intensive and often rely on assumptions (e.g., gate-independent
noise). Recent breakthroughs utilize Reinforcement Learning (RL) to learn the noise model
itself.?

In this approach, an RL agent interacts with the quantum device (or a simulator of it). The
"state" is the current estimate of the noise channel parameters (e.g., Kraus operators). The
"action" is the selection of a probe circuit to run. The "reward" is the prediction accuracy of
the noise model on a validation set. This RL-driven approach minimizes heuristic assumptions
and can capture complex, non-Markovian noise patterns that standard RB misses.?

6.2 Root Space Decomposition and Spatial Correlations

A significant limitation of simple noise models is the assumption of independent errors. In
reality, noise spreads across space and time. Researchers at Johns Hopkins APL have
developed a framework using Root Space Decomposition to analyze how noise propagates
through the system.®

This mathematical technique simplifies the analysis of the system's symmetry, allowing for the
classification of noise types based on how they impact the system's root space. By identifying
these symmetries, one can construct noise models that accurately reflect the spatial
correlations of the device.

Why this matters for Decision Making:

If noise is spatially correlated (e.g., crosstalk between qubit O and qubit 1), a decision
algorithm can exploit this. For example, in a multi-agent RL scenario where Agent A (Qubit 0)
and Agent B (Qubit 1) need to coordinate, the correlated noise provides a "shared source of
randomness" or "common cause" that can naturally synchronize their exploration strategies
without explicit communication.37




7. Technical Implementation Framework in Qiskit

This section provides a granular technical guide to constructing the "Noise-Aware" decision
engine using Qiskit.

7.1 Advanced NoiseModel Construction

To use noise as a parameter, we must build custom NoiseModel objects rather than relying on
NoiseModel.from_backend().
Key Classes:
e (qiskit_aer.noise.NoiseModel: The container.
e qiskit_aer.noise.QuantumError: The general error object.
e qiskit_aer.noise.ReadoutError: For measurement errors.
Code Logic for Tunable Noise:

Python

import numpy as np

from qiskit import QuantumCircuit, transpile

from qiskit_aer import AerSimulator

from qiskit_aer.noise import NoiseModel, depolarizing_error, thermal_relaxation_error

def get_tunable_backend(noise_level, error_type='depolarizing’):

Returns a simulator with a specific noise level.

noise_model = NoiseModel()

if error_type == 'depolarizing":
# Create a 1-qubit error
error_1q = depolarizing_error(noise_level, 1)
# Create a 2-qubit error (usually higher)
error_2q = depolarizing_error(noise_level * 10, 2)

# Apply to standard basis gates
noise_model.add_all_qubit_quantum_error(error_1q, ['u1’, 'u2’, 'u3’, 'rz', 'sx’, 'x'])

noise_model.add_all_qubit_quantum_error(error_2q, ['cx'])

elif error_type == 'thermal:



# Map noise_level to T1 (inverse relationship)
# Higher noise_level -> Shorter T1
t1=100e-6/ (1 + noise_level * 10)

t2 = t1* 0.5 # Example relation

gate_time = 1e-7 # 100 ns

error_thermal = thermal_relaxation_error(t1, t2, gate_time)
noise_model.add_all_qubit_quantum_error(error_thermal, ['id’, 'rz', 'sx’, 'x'])

# Initialize Simulator
sim = AerSimulator(noise_model=noise_model)
return sim

# Usage in an RL Loop

current_noise = 0.5 # High exploration

backend = get_tunable_backend(current_noise)
#... execute circuit...

7.2 Simulating Large-Scale Noisy Systems with Dask

Simulating noise is computationally expensive. A noisy simulation with $N$ shots typically
requires significantly more runtime than an ideal statevector simulation, especially if using a
density matrix simulator which scales as $4~N$ rather than $2°N$.*°

To scale this decision framework to relevant problem sizes (20+ qubits), one should leverage
Dask Clusters for parallelization. Qiskit Aer supports distributed simulation via Dask.*'
Implementation:

1. Setup Dask Client: Initialize a Dask client connected to a cluster of CPUs/GPUs.

2. Aer Configuration: Set max_job_size and max_shot_size in AerSimulator.

3. Execution: When backend.run() is called with a large number of circuits (e.g., a batch of
RL episodes) or a large number of shots, Aer automatically splits the workload across
the Dask workers.

This capability is essential for "Noise Learning" and "Noise-Adaptive Optimization" where
thousands of noisy circuit evaluations are required to estimate gradients or characterize error
channels.”

7.3 Dynamic Circuits and Feedforward

Qiskit's support for Dynamic Circuits (control flow, mid-circuit measurement) enables
real-time noise exploitation. One can measure a qubit, and based on the noisy outcome,



dynamically branch to a different sub-circuit.*?

Scenario: Stochastic Correction.

A mid-circuit measurement checks a parity stabilizer. If an error is detected (noise event),
instead of correcting it (QEC), the algorithm branches to a "high-risk, high-reward" decision
path, operating on the assumption that the system has been "thermally kicked" into a new
region of the solution space. This effectively implements the "Pausing" or "Tunneling" logic
within the circuit execution itself, utilizing if_else constructs in Qiskit.42

8. Challenges and Strategic Considerations

While the exploitation of noise offers significant potential, it is accompanied by non-trivial
challenges that must be managed.

8.1 The "Goldilocks" Zone and Instability

The primary operational challenge is finding the optimal noise level $p”*$. This value is not
universal; it depends on the specific problem instance (e.g., the landscape curvature) and the
circuit depth.
e Too little noise: The system remains trapped in local minima or fails to exhibit
stochastic resonance.
e Too much noise: The system enters the "Zeno" regime or becomes maximally mixed,
destroying all decision information.’
Furthermore, real hardware is temporally unstable. $T_1$ and $T_2$ fluctuate due to two-level
system (TLS) defects and temperature drifts.® A noise-aware algorithm calibrated for the
noise profile at 9:00 AM might be suboptimal by 12:00 PM. This necessitates Adaptive
Recalibration, where the RL agent or optimizer continuously monitors the noise spectrum
(using the Noise Learning techniques from Section 6) and adjusts its strategy accordingly.

8.2 Non-Markovian Memory Effects

Most simulations (and the standard Lindblad equation) assume Markovian noise
(memoryless). However, real experimental noise often exhibits non-Markovianity (colored
noise).® While this complicates simulation, it also offers a resource: Memory. If the bath
retains information about the system's past, this feedback loop can be utilized to preserve
coherence (via bound states) or to encode temporal dependencies in the decision problem
(e.g., time-series prediction) directly into the bath interaction.’



8.3 Simulation vs. Reality Gap

There is a risk that algorithms optimized for simulated noise (e.g., ideal depolarizing channels)
will fail on real hardware with coherent errors and crosstalk. The "Noise-Resilient QRL"
utilizing bound states ® specifically relies on the spectral properties of the noise. If the real
noise spectrum differs from the theoretical model, the bound state may not form. This
underscores the need for Hardware-in-the-Loop (HIL) training, where the decision engine is
trained directly on the QPU rather than solely on a simulator.**

9. Case Studies and Future Outlook

9.1 Case Study: Financial Risk Analysis

In credit risk analysis *°, the goal is to estimate the tail risk of a portfolio (a rare event). This is
a threshold detection problem. A QSR-based circuit can be employed where the portfolio
parameters modulate the rotation angles of qubits. By tuning the device noise (or adding
synthetic noise via Pauli gates), the system can be brought to resonance with the "default
event" signal, enhancing the estimation of Value at Risk (VaR) in the high-noise/low-signal
regime.

9.2 Case Study: Quantum Image Segmentation

In image processing, segmentation relies on thresholding to separate objects from the
background. A quantum image segmentation algorithm using an adaptive threshold has been
demonstrated on IBM Q platforms.*® By utilizing the noise in the quantum readout, the
threshold becomes "soft" or probabilistic. This stochastic thresholding has been shown to be
more robust to artifacts in the input image than a hard, deterministic threshold, effectively
using quantum noise to smooth the segmentation map.

9.3 Future Outlook: Synthetic Noise in Fault-Tolerant Era

As hardware advances toward fault tolerance, the physical noise will be suppressed. However,
the utility of noise described in this report suggests that the algorithms of the future may
require Synthetic Noise Injection. Just as modern neural networks use "Dropout" (artificial
noise) to prevent overfitting, future Fault-Tolerant Quantum Computers (FTQC) may include



logical operations designed solely to inject controlled entropy into the system to facilitate
exploration and regularization.’

10. Conclusion

The transition from the NISQ era to the fault-tolerant era is not merely a process of cleaning
up errors; it is a process of understanding the thermodynamic relationship between
information, energy, and noise. This report establishes that for a broad class of
decision-making problems—ranging from signal detection to reinforcement learning and
optimization—noise is not an adversary but an untapped resource.

By leveraging the Qiskit framework's advanced noise modeling, dynamic circuit capabilities,
and simulation backends, researchers can engineer entropic dynamics that enhance
algorithmic performance. Whether through the resonance of weak signals (QSR), the
thermalization of optimization landscapes (NAQA), or the intrinsic exploration of policy spaces
(QRL), the "Noise-Aware" design philosophy transforms the quantum processor from a fragile
calculator into a robust, stochastic decision engine. The path forward lies not just in silencing
the noise, but in learning to speak its language.

Data Appendix: Comparative Analysis of Noise Utilization

Table 2: Comparison of Noise Utility in Classical vs. Quantum Decision Architectures

Feature Classical Decision  |Quantum Decision |Advantage of

Making Making Quantum Approach
(Noise-Enhanced)

Exploration Source |Pseudo-Random Intrinsic Quantum True entropy; naturally
Number Generators  [Uncertainty + Device [scales with Hilbert
(PRNG) Noise space dimension.

Exploration Cost Computational "Free" (thermodynamicReduced classical
overhead to generate |pyproduct). control overhead.
numbers.

Local Minima Escape [Simulated Annealing [Quantum Tunneling + [Tunneling allows
(Metropolis-Hastings). [Thermal Relaxation.  [traversing high, thin
barriers that thermal
jumps cannot.”

Signal Detection Threshold Stochastic |Quantum Stochastic  [Exploits non-classical
Resonance (Classical). [Resonance (QSR). correlations and
tunneling; higher
sensitivity for specific
weak signals.®




Parameter Space Learning Rate, Epsilon, [Gate Angles Richer control space;

Temperature. ($\theta$), Noise Prob [physical parameters
($p$), Coherence Time[map directly to
($T_29%). algorithmic dynamics.
Implementation random.choice(), NoiseModel, Integration of

np.random.normal()  [measure(), t1/t2 drift. |hardware physics into
software logic.*’
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